3.1.73 \(\int \frac {(d+e x)^3 (d^2-e^2 x^2)^{5/2}}{x^3} \, dx\) [73]

Optimal. Leaf size=207 \[ \frac {1}{16} d^4 e^2 (8 d-85 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{24} d^2 e^2 (4 d-85 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{30} e^2 (3 d-85 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{7/2}}{x}-\frac {85}{16} d^6 e^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {1}{2} d^6 e^2 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \]

[Out]

1/24*d^2*e^2*(-85*e*x+4*d)*(-e^2*x^2+d^2)^(3/2)+1/30*e^2*(-85*e*x+3*d)*(-e^2*x^2+d^2)^(5/2)-1/2*d*(-e^2*x^2+d^
2)^(7/2)/x^2-3*e*(-e^2*x^2+d^2)^(7/2)/x-85/16*d^6*e^2*arctan(e*x/(-e^2*x^2+d^2)^(1/2))-1/2*d^6*e^2*arctanh((-e
^2*x^2+d^2)^(1/2)/d)+1/16*d^4*e^2*(-85*e*x+8*d)*(-e^2*x^2+d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 207, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {1821, 829, 858, 223, 209, 272, 65, 214} \begin {gather*} -\frac {85}{16} d^6 e^2 \text {ArcTan}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )+\frac {1}{24} d^2 e^2 (4 d-85 e x) \left (d^2-e^2 x^2\right )^{3/2}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{7/2}}{x}+\frac {1}{30} e^2 (3 d-85 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {1}{2} d^6 e^2 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )+\frac {1}{16} d^4 e^2 (8 d-85 e x) \sqrt {d^2-e^2 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^3*(d^2 - e^2*x^2)^(5/2))/x^3,x]

[Out]

(d^4*e^2*(8*d - 85*e*x)*Sqrt[d^2 - e^2*x^2])/16 + (d^2*e^2*(4*d - 85*e*x)*(d^2 - e^2*x^2)^(3/2))/24 + (e^2*(3*
d - 85*e*x)*(d^2 - e^2*x^2)^(5/2))/30 - (d*(d^2 - e^2*x^2)^(7/2))/(2*x^2) - (3*e*(d^2 - e^2*x^2)^(7/2))/x - (8
5*d^6*e^2*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/16 - (d^6*e^2*ArcTanh[Sqrt[d^2 - e^2*x^2]/d])/2

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 829

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*((a + c*x^2)^p/(c*e^2*(m + 2*p + 1)*(m +
 2*p + 2))), x] + Dist[2*(p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1821

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rubi steps

\begin {align*} \int \frac {(d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}}{x^3} \, dx &=-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{2 x^2}-\frac {\int \frac {\left (d^2-e^2 x^2\right )^{5/2} \left (-6 d^4 e-d^3 e^2 x-2 d^2 e^3 x^2\right )}{x^2} \, dx}{2 d^2}\\ &=-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{7/2}}{x}+\frac {\int \frac {\left (d^5 e^2-34 d^4 e^3 x\right ) \left (d^2-e^2 x^2\right )^{5/2}}{x} \, dx}{2 d^4}\\ &=\frac {1}{30} e^2 (3 d-85 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{7/2}}{x}-\frac {\int \frac {\left (-6 d^7 e^4+170 d^6 e^5 x\right ) \left (d^2-e^2 x^2\right )^{3/2}}{x} \, dx}{12 d^4 e^2}\\ &=\frac {1}{24} d^2 e^2 (4 d-85 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{30} e^2 (3 d-85 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{7/2}}{x}+\frac {\int \frac {\left (24 d^9 e^6-510 d^8 e^7 x\right ) \sqrt {d^2-e^2 x^2}}{x} \, dx}{48 d^4 e^4}\\ &=\frac {1}{16} d^4 e^2 (8 d-85 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{24} d^2 e^2 (4 d-85 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{30} e^2 (3 d-85 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{7/2}}{x}-\frac {\int \frac {-48 d^{11} e^8+510 d^{10} e^9 x}{x \sqrt {d^2-e^2 x^2}} \, dx}{96 d^4 e^6}\\ &=\frac {1}{16} d^4 e^2 (8 d-85 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{24} d^2 e^2 (4 d-85 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{30} e^2 (3 d-85 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{7/2}}{x}+\frac {1}{2} \left (d^7 e^2\right ) \int \frac {1}{x \sqrt {d^2-e^2 x^2}} \, dx-\frac {1}{16} \left (85 d^6 e^3\right ) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx\\ &=\frac {1}{16} d^4 e^2 (8 d-85 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{24} d^2 e^2 (4 d-85 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{30} e^2 (3 d-85 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{7/2}}{x}+\frac {1}{4} \left (d^7 e^2\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {d^2-e^2 x}} \, dx,x,x^2\right )-\frac {1}{16} \left (85 d^6 e^3\right ) \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )\\ &=\frac {1}{16} d^4 e^2 (8 d-85 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{24} d^2 e^2 (4 d-85 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{30} e^2 (3 d-85 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{7/2}}{x}-\frac {85}{16} d^6 e^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {1}{2} d^7 \text {Subst}\left (\int \frac {1}{\frac {d^2}{e^2}-\frac {x^2}{e^2}} \, dx,x,\sqrt {d^2-e^2 x^2}\right )\\ &=\frac {1}{16} d^4 e^2 (8 d-85 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{24} d^2 e^2 (4 d-85 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{30} e^2 (3 d-85 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{7/2}}{x}-\frac {85}{16} d^6 e^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {1}{2} d^6 e^2 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.63, size = 189, normalized size = 0.91 \begin {gather*} \frac {\sqrt {d^2-e^2 x^2} \left (-120 d^7-720 d^6 e x+544 d^5 e^2 x^2-645 d^4 e^3 x^3-448 d^3 e^4 x^4+50 d^2 e^5 x^5+144 d e^6 x^6+40 e^7 x^7\right )}{240 x^2}+d^6 e^2 \tanh ^{-1}\left (\frac {\sqrt {-e^2} x}{d}-\frac {\sqrt {d^2-e^2 x^2}}{d}\right )-\frac {85}{16} d^6 e \sqrt {-e^2} \log \left (-\sqrt {-e^2} x+\sqrt {d^2-e^2 x^2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^3*(d^2 - e^2*x^2)^(5/2))/x^3,x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(-120*d^7 - 720*d^6*e*x + 544*d^5*e^2*x^2 - 645*d^4*e^3*x^3 - 448*d^3*e^4*x^4 + 50*d^2*e^
5*x^5 + 144*d*e^6*x^6 + 40*e^7*x^7))/(240*x^2) + d^6*e^2*ArcTanh[(Sqrt[-e^2]*x)/d - Sqrt[d^2 - e^2*x^2]/d] - (
85*d^6*e*Sqrt[-e^2]*Log[-(Sqrt[-e^2]*x) + Sqrt[d^2 - e^2*x^2]])/16

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(473\) vs. \(2(181)=362\).
time = 0.07, size = 474, normalized size = 2.29

method result size
risch \(-\frac {\sqrt {-e^{2} x^{2}+d^{2}}\, \left (-40 e^{7} x^{7}-144 d \,e^{6} x^{6}-50 d^{2} e^{5} x^{5}+448 d^{3} e^{4} x^{4}+645 d^{4} e^{3} x^{3}-544 d^{5} e^{2} x^{2}+720 d^{6} e x +120 d^{7}\right )}{240 x^{2}}-\frac {85 d^{6} e^{3} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{16 \sqrt {e^{2}}}-\frac {d^{7} e^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{2 \sqrt {d^{2}}}\) \(175\)
default \(e^{3} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{6}+\frac {5 d^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{4}+\frac {3 d^{2} \left (\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )}{6}\right )+d^{3} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{2 d^{2} x^{2}}-\frac {5 e^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{5}+d^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3}+d^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )\right )\right )}{2 d^{2}}\right )+3 d^{2} e \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{d^{2} x}-\frac {6 e^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{6}+\frac {5 d^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{4}+\frac {3 d^{2} \left (\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )}{6}\right )}{d^{2}}\right )+3 d \,e^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{5}+d^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3}+d^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )\right )\right )\) \(474\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x^3,x,method=_RETURNVERBOSE)

[Out]

e^3*(1/6*x*(-e^2*x^2+d^2)^(5/2)+5/6*d^2*(1/4*x*(-e^2*x^2+d^2)^(3/2)+3/4*d^2*(1/2*x*(-e^2*x^2+d^2)^(1/2)+1/2*d^
2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2)))))+d^3*(-1/2/d^2/x^2*(-e^2*x^2+d^2)^(7/2)-5/2*e^2/d^2
*(1/5*(-e^2*x^2+d^2)^(5/2)+d^2*(1/3*(-e^2*x^2+d^2)^(3/2)+d^2*((-e^2*x^2+d^2)^(1/2)-d^2/(d^2)^(1/2)*ln((2*d^2+2
*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x)))))+3*d^2*e*(-1/d^2/x*(-e^2*x^2+d^2)^(7/2)-6*e^2/d^2*(1/6*x*(-e^2*x^2+d^
2)^(5/2)+5/6*d^2*(1/4*x*(-e^2*x^2+d^2)^(3/2)+3/4*d^2*(1/2*x*(-e^2*x^2+d^2)^(1/2)+1/2*d^2/(e^2)^(1/2)*arctan((e
^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2))))))+3*d*e^2*(1/5*(-e^2*x^2+d^2)^(5/2)+d^2*(1/3*(-e^2*x^2+d^2)^(3/2)+d^2*((-e
^2*x^2+d^2)^(1/2)-d^2/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x))))

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 214, normalized size = 1.03 \begin {gather*} -\frac {85}{16} \, d^{6} \arcsin \left (\frac {x e}{d}\right ) e^{2} - \frac {1}{2} \, d^{6} e^{2} \log \left (\frac {2 \, d^{2}}{{\left | x \right |}} + \frac {2 \, \sqrt {-x^{2} e^{2} + d^{2}} d}{{\left | x \right |}}\right ) - \frac {85}{16} \, \sqrt {-x^{2} e^{2} + d^{2}} d^{4} x e^{3} + \frac {1}{2} \, \sqrt {-x^{2} e^{2} + d^{2}} d^{5} e^{2} - \frac {85}{24} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{2} x e^{3} + \frac {1}{6} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{3} e^{2} + \frac {1}{6} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}} x e^{3} + \frac {1}{10} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}} d e^{2} - \frac {3 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}} d^{2} e}{x} - \frac {{\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {7}{2}} d}{2 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x^3,x, algorithm="maxima")

[Out]

-85/16*d^6*arcsin(x*e/d)*e^2 - 1/2*d^6*e^2*log(2*d^2/abs(x) + 2*sqrt(-x^2*e^2 + d^2)*d/abs(x)) - 85/16*sqrt(-x
^2*e^2 + d^2)*d^4*x*e^3 + 1/2*sqrt(-x^2*e^2 + d^2)*d^5*e^2 - 85/24*(-x^2*e^2 + d^2)^(3/2)*d^2*x*e^3 + 1/6*(-x^
2*e^2 + d^2)^(3/2)*d^3*e^2 + 1/6*(-x^2*e^2 + d^2)^(5/2)*x*e^3 + 1/10*(-x^2*e^2 + d^2)^(5/2)*d*e^2 - 3*(-x^2*e^
2 + d^2)^(5/2)*d^2*e/x - 1/2*(-x^2*e^2 + d^2)^(7/2)*d/x^2

________________________________________________________________________________________

Fricas [A]
time = 2.93, size = 167, normalized size = 0.81 \begin {gather*} \frac {2550 \, d^{6} x^{2} \arctan \left (-\frac {{\left (d - \sqrt {-x^{2} e^{2} + d^{2}}\right )} e^{\left (-1\right )}}{x}\right ) e^{2} + 120 \, d^{6} x^{2} e^{2} \log \left (-\frac {d - \sqrt {-x^{2} e^{2} + d^{2}}}{x}\right ) + 544 \, d^{6} x^{2} e^{2} + {\left (40 \, x^{7} e^{7} + 144 \, d x^{6} e^{6} + 50 \, d^{2} x^{5} e^{5} - 448 \, d^{3} x^{4} e^{4} - 645 \, d^{4} x^{3} e^{3} + 544 \, d^{5} x^{2} e^{2} - 720 \, d^{6} x e - 120 \, d^{7}\right )} \sqrt {-x^{2} e^{2} + d^{2}}}{240 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x^3,x, algorithm="fricas")

[Out]

1/240*(2550*d^6*x^2*arctan(-(d - sqrt(-x^2*e^2 + d^2))*e^(-1)/x)*e^2 + 120*d^6*x^2*e^2*log(-(d - sqrt(-x^2*e^2
 + d^2))/x) + 544*d^6*x^2*e^2 + (40*x^7*e^7 + 144*d*x^6*e^6 + 50*d^2*x^5*e^5 - 448*d^3*x^4*e^4 - 645*d^4*x^3*e
^3 + 544*d^5*x^2*e^2 - 720*d^6*x*e - 120*d^7)*sqrt(-x^2*e^2 + d^2))/x^2

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 12.36, size = 1059, normalized size = 5.12 \begin {gather*} d^{7} \left (\begin {cases} - \frac {e \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{2 x} + \frac {e^{2} \operatorname {acosh}{\left (\frac {d}{e x} \right )}}{2 d} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\\frac {i d^{2}}{2 e x^{3} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e}{2 x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e^{2} \operatorname {asin}{\left (\frac {d}{e x} \right )}}{2 d} & \text {otherwise} \end {cases}\right ) + 3 d^{6} e \left (\begin {cases} \frac {i d}{x \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + i e \operatorname {acosh}{\left (\frac {e x}{d} \right )} - \frac {i e^{2} x}{d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\- \frac {d}{x \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - e \operatorname {asin}{\left (\frac {e x}{d} \right )} + \frac {e^{2} x}{d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) + d^{5} e^{2} \left (\begin {cases} \frac {d^{2}}{e x \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} - d \operatorname {acosh}{\left (\frac {d}{e x} \right )} - \frac {e x}{\sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\- \frac {i d^{2}}{e x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} + i d \operatorname {asin}{\left (\frac {d}{e x} \right )} + \frac {i e x}{\sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} & \text {otherwise} \end {cases}\right ) - 5 d^{4} e^{3} \left (\begin {cases} - \frac {i d^{2} \operatorname {acosh}{\left (\frac {e x}{d} \right )}}{2 e} - \frac {i d x}{2 \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + \frac {i e^{2} x^{3}}{2 d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\\frac {d^{2} \operatorname {asin}{\left (\frac {e x}{d} \right )}}{2 e} + \frac {d x \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}}{2} & \text {otherwise} \end {cases}\right ) - 5 d^{3} e^{4} \left (\begin {cases} \frac {x^{2} \sqrt {d^{2}}}{2} & \text {for}\: e^{2} = 0 \\- \frac {\left (d^{2} - e^{2} x^{2}\right )^{\frac {3}{2}}}{3 e^{2}} & \text {otherwise} \end {cases}\right ) + d^{2} e^{5} \left (\begin {cases} - \frac {i d^{4} \operatorname {acosh}{\left (\frac {e x}{d} \right )}}{8 e^{3}} + \frac {i d^{3} x}{8 e^{2} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {3 i d x^{3}}{8 \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + \frac {i e^{2} x^{5}}{4 d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\\frac {d^{4} \operatorname {asin}{\left (\frac {e x}{d} \right )}}{8 e^{3}} - \frac {d^{3} x}{8 e^{2} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {3 d x^{3}}{8 \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - \frac {e^{2} x^{5}}{4 d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) + 3 d e^{6} \left (\begin {cases} - \frac {2 d^{4} \sqrt {d^{2} - e^{2} x^{2}}}{15 e^{4}} - \frac {d^{2} x^{2} \sqrt {d^{2} - e^{2} x^{2}}}{15 e^{2}} + \frac {x^{4} \sqrt {d^{2} - e^{2} x^{2}}}{5} & \text {for}\: e \neq 0 \\\frac {x^{4} \sqrt {d^{2}}}{4} & \text {otherwise} \end {cases}\right ) + e^{7} \left (\begin {cases} - \frac {i d^{6} \operatorname {acosh}{\left (\frac {e x}{d} \right )}}{16 e^{5}} + \frac {i d^{5} x}{16 e^{4} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {i d^{3} x^{3}}{48 e^{2} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {5 i d x^{5}}{24 \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + \frac {i e^{2} x^{7}}{6 d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\\frac {d^{6} \operatorname {asin}{\left (\frac {e x}{d} \right )}}{16 e^{5}} - \frac {d^{5} x}{16 e^{4} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {d^{3} x^{3}}{48 e^{2} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {5 d x^{5}}{24 \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - \frac {e^{2} x^{7}}{6 d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3*(-e**2*x**2+d**2)**(5/2)/x**3,x)

[Out]

d**7*Piecewise((-e*sqrt(d**2/(e**2*x**2) - 1)/(2*x) + e**2*acosh(d/(e*x))/(2*d), Abs(d**2/(e**2*x**2)) > 1), (
I*d**2/(2*e*x**3*sqrt(-d**2/(e**2*x**2) + 1)) - I*e/(2*x*sqrt(-d**2/(e**2*x**2) + 1)) - I*e**2*asin(d/(e*x))/(
2*d), True)) + 3*d**6*e*Piecewise((I*d/(x*sqrt(-1 + e**2*x**2/d**2)) + I*e*acosh(e*x/d) - I*e**2*x/(d*sqrt(-1
+ e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (-d/(x*sqrt(1 - e**2*x**2/d**2)) - e*asin(e*x/d) + e**2*x/(d*sqr
t(1 - e**2*x**2/d**2)), True)) + d**5*e**2*Piecewise((d**2/(e*x*sqrt(d**2/(e**2*x**2) - 1)) - d*acosh(d/(e*x))
 - e*x/sqrt(d**2/(e**2*x**2) - 1), Abs(d**2/(e**2*x**2)) > 1), (-I*d**2/(e*x*sqrt(-d**2/(e**2*x**2) + 1)) + I*
d*asin(d/(e*x)) + I*e*x/sqrt(-d**2/(e**2*x**2) + 1), True)) - 5*d**4*e**3*Piecewise((-I*d**2*acosh(e*x/d)/(2*e
) - I*d*x/(2*sqrt(-1 + e**2*x**2/d**2)) + I*e**2*x**3/(2*d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1
), (d**2*asin(e*x/d)/(2*e) + d*x*sqrt(1 - e**2*x**2/d**2)/2, True)) - 5*d**3*e**4*Piecewise((x**2*sqrt(d**2)/2
, Eq(e**2, 0)), (-(d**2 - e**2*x**2)**(3/2)/(3*e**2), True)) + d**2*e**5*Piecewise((-I*d**4*acosh(e*x/d)/(8*e*
*3) + I*d**3*x/(8*e**2*sqrt(-1 + e**2*x**2/d**2)) - 3*I*d*x**3/(8*sqrt(-1 + e**2*x**2/d**2)) + I*e**2*x**5/(4*
d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (d**4*asin(e*x/d)/(8*e**3) - d**3*x/(8*e**2*sqrt(1 - e
**2*x**2/d**2)) + 3*d*x**3/(8*sqrt(1 - e**2*x**2/d**2)) - e**2*x**5/(4*d*sqrt(1 - e**2*x**2/d**2)), True)) + 3
*d*e**6*Piecewise((-2*d**4*sqrt(d**2 - e**2*x**2)/(15*e**4) - d**2*x**2*sqrt(d**2 - e**2*x**2)/(15*e**2) + x**
4*sqrt(d**2 - e**2*x**2)/5, Ne(e, 0)), (x**4*sqrt(d**2)/4, True)) + e**7*Piecewise((-I*d**6*acosh(e*x/d)/(16*e
**5) + I*d**5*x/(16*e**4*sqrt(-1 + e**2*x**2/d**2)) - I*d**3*x**3/(48*e**2*sqrt(-1 + e**2*x**2/d**2)) - 5*I*d*
x**5/(24*sqrt(-1 + e**2*x**2/d**2)) + I*e**2*x**7/(6*d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (
d**6*asin(e*x/d)/(16*e**5) - d**5*x/(16*e**4*sqrt(1 - e**2*x**2/d**2)) + d**3*x**3/(48*e**2*sqrt(1 - e**2*x**2
/d**2)) + 5*d*x**5/(24*sqrt(1 - e**2*x**2/d**2)) - e**2*x**7/(6*d*sqrt(1 - e**2*x**2/d**2)), True))

________________________________________________________________________________________

Giac [A]
time = 1.53, size = 256, normalized size = 1.24 \begin {gather*} -\frac {85}{16} \, d^{6} \arcsin \left (\frac {x e}{d}\right ) e^{2} \mathrm {sgn}\left (d\right ) - \frac {1}{2} \, d^{6} e^{2} \log \left (\frac {{\left | -2 \, d e - 2 \, \sqrt {-x^{2} e^{2} + d^{2}} e \right |} e^{\left (-2\right )}}{2 \, {\left | x \right |}}\right ) - \frac {{\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{2} d^{6} e^{\left (-2\right )}}{8 \, x^{2}} - \frac {3 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )} d^{6}}{2 \, x} + \frac {{\left (d^{6} e^{2} + \frac {12 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )} d^{6}}{x}\right )} x^{2} e^{4}}{8 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{2}} + \frac {1}{240} \, {\left (544 \, d^{5} e^{2} - {\left (645 \, d^{4} e^{3} + 2 \, {\left (224 \, d^{3} e^{4} - {\left (25 \, d^{2} e^{5} + 4 \, {\left (5 \, x e^{7} + 18 \, d e^{6}\right )} x\right )} x\right )} x\right )} x\right )} \sqrt {-x^{2} e^{2} + d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x^3,x, algorithm="giac")

[Out]

-85/16*d^6*arcsin(x*e/d)*e^2*sgn(d) - 1/2*d^6*e^2*log(1/2*abs(-2*d*e - 2*sqrt(-x^2*e^2 + d^2)*e)*e^(-2)/abs(x)
) - 1/8*(d*e + sqrt(-x^2*e^2 + d^2)*e)^2*d^6*e^(-2)/x^2 - 3/2*(d*e + sqrt(-x^2*e^2 + d^2)*e)*d^6/x + 1/8*(d^6*
e^2 + 12*(d*e + sqrt(-x^2*e^2 + d^2)*e)*d^6/x)*x^2*e^4/(d*e + sqrt(-x^2*e^2 + d^2)*e)^2 + 1/240*(544*d^5*e^2 -
 (645*d^4*e^3 + 2*(224*d^3*e^4 - (25*d^2*e^5 + 4*(5*x*e^7 + 18*d*e^6)*x)*x)*x)*x)*sqrt(-x^2*e^2 + d^2)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (d^2-e^2\,x^2\right )}^{5/2}\,{\left (d+e\,x\right )}^3}{x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d^2 - e^2*x^2)^(5/2)*(d + e*x)^3)/x^3,x)

[Out]

int(((d^2 - e^2*x^2)^(5/2)*(d + e*x)^3)/x^3, x)

________________________________________________________________________________________